A fourth-order method from quadrature formulae to solve systems of nonlinear equations

نویسندگان

  • M. T. Darvishi
  • Ali Barati
چکیده

In this paper, we obtain a fourth-order convergence method to solve systems of nonlinear equations. This method is based on a quadrature formulae. A general error analysis providing the fourth order of convergence is given. Numerical examples show the fourth-order convergence. This method does not use the second-order Fréchet derivative. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order quadrature based iterative method for approximating the solution of nonlinear equations

In this paper, weight function and composition technique is utilized to speeds up the convergence order and increase the efficiency of an existing quadrature based iterative method. This results in the proposition of its improved form from a two-point quadrature based method of convergence order ρ = 3 with efficiency index EI = 1:3161 to a three-point method of convergence order ρ = 8 with EI =...

متن کامل

Differential transform method for a a nonlinear system of differential equations arising in HIV infection of CD4+T cell

In this paper, differential transform method (DTM) is described and is applied to solve systems of nonlinear ordinary differential equations which is arising in HIV infections of cell. Intervals of validity of the solution will be extended by using Pade approximation. The results also will be compared with those results obtained by Runge-Kutta method. The technique is described and is illustrat...

متن کامل

Nonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics

The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...

متن کامل

A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule

Darvishi and Barati [M.T. Darvishi, A. Barati, Super cubic iterative methods to solve systems of nonlinear equations, Appl. Math. Comput., 2006, 10.1016/j.amc.2006.11.022] derived a Super cubic method from the Adomian decomposition method to solve systems of nonlinear equations. The authors showed that the method is third-order convergent using classical Taylor expansion but the numerical exper...

متن کامل

Super cubic iterative methods to solve systems of nonlinear equations

Two super cubic convergence methods to solve systems of nonlinear equations are presented. The first method is based on the Adomian decomposition method. We state and prove a theorem which shows the cubic convergence for this method. But numerical examples show super cubic convergence. The second method is based on a quadrature formulae to obtain the inverse of Jacobian matrix. Numerical exampl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 188  شماره 

صفحات  -

تاریخ انتشار 2007